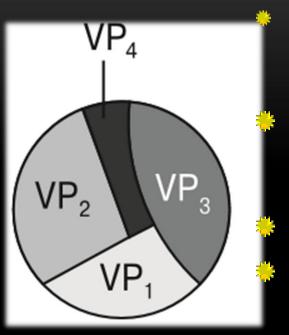


- К роду Enterovirus, помимо вируса полиомиелита, относятся широко распространенные возбудители инфекционных заболеваний человека так называемые неполиовирусы;
- У инфицированных *неполиовирусами* может наблюдаться широкий спектр симптомов: от признаков простуды до тяжелых заболеваний (серозного менингита, параличей, миокардита) с летальным исходом.
- Энтеровирусы способны вызывать вспышки и эпидемии энтеровирусной инфекции (ЭИ).
- В Российской Федерации, помимо программы ВОЗ, направленной на ликвидацию полиомиелита, проводится постоянный эпидемиологический надзор за всеми энтеровирусными инфекциями.
- Учитывая высокую генетическую изменчивость энтеровирусов, в будущем возможно появление их новых высокопатогенных штаммов.
- ▶ Лабораторная диагностика энтеровирусных инфекций (ЭИ) осложняется большим количеством серотипов возбудителя, поэтому наряду с классическими вирусологическими методами в диагностике используют молекулярно-биологические методы, позволяющие секвенировать геном возбудителя и определить филогенетические связи между различными штаммами энтеровирусов.


Строение и таксономия энтеровирусов

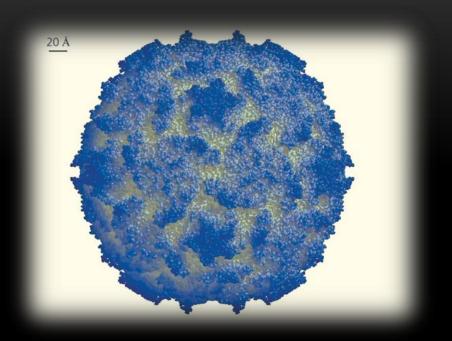
Капсид представителей сем. Picornaviridae, включающего род Enterovirus, характеризуется икосаэдрической симметрией.

- Геном нефрагментированная однонитевая +PHK, связанная с белком VPg (от англ. Viral protein genome linked, вирусный белок, соединенный с геномом). После удаления капсида экстрагированная РНК сохраняет инфекциозность.
- Репликация вируса и сборка вирусных частиц осуществляется в цитоплазме чувствительной клетки в течение нескольких часов. Являясь позитивной, вРНК непосредственно транслируется на рибосомах в вирусоспецифические белки. Одним из таких белков неструктурным является РНК- репликаза, при участии которой происходит репликация вРНК.
- 🌞 Вирусные частицы высвобождаются из клетки при разрушении последней

Строение и таксономия пикорнавирусов

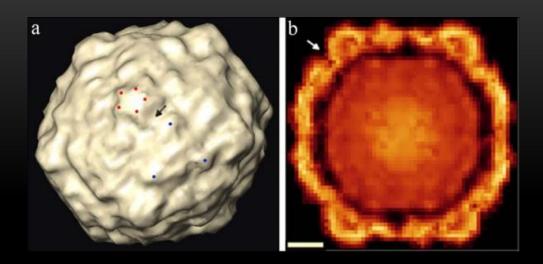
Белки капсида представлены четырьмя полипептидами: VP1, VP2, VP3, VP4 (пронумерованы согласно убыванию молекулярной массы).

Части VP1-3 находятся на поверхности вириона, тогда как N-концы VP1-3 и все молекулы VP4 расположены полностью в его внутренней части.

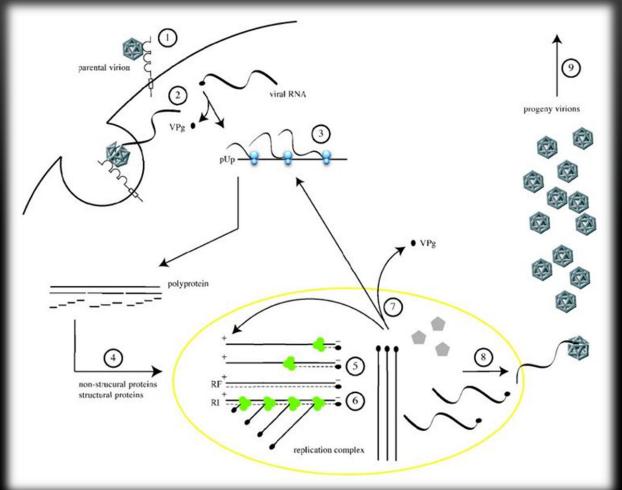

VP1 — основная мишень нейтрализующих антител

Вирусный серотип определяется соединительными петлями и С-концами капсидных белков, которые находятся на внешней поверхности вириона — это главные антигенные участки вируса.

- Пикорнавирусы принадлежат к числу самых мелких из известных РНК-содержащих вирусов, отсюда и происходит их название: pico очень маленькие, rna — PHK.
- Они составляют одно из наиболее многочисленных и важных семейств возбудителей заболеваний человека, таких как полиовирус, вирус гепатита А, неполиомиелитные энтеровирусы, риновирусы


2020

Модель энтеровируса



Название энтеровирусов связано с их репродукцией в ЖКТ, однако энтерит они вызывают крайне редко.

- Полиовирус патогенен только для приматов, главным образом из-за того, что только у них есть соответствующие рецепторы.
- Им нельзя заразить культуру клеток мыши, однако у трансгенных мышей, клетки которых содержат соответствующий рецептор, развивается полиомиелит с поражением ЦНС.

- Трехмерное изображение полиовируса. С помощью рентгеноструктурного анализа было получено трехмерное изображение вирусов полиомиелита.
- Углубление («каньон») на поверхности вируса является областью соединения с клеточным рецептором.
- Полиовирус связывается с клеточными рецепторами, относящимися к суперсемейству иммуноглобулинов; ECHO-вирусы серотипов 1 и 8 с альфа-2бета-1-интегрином (VLA-2); энтеровирус серотипа 7 с CD55 (фактором ускорения распада).

• Жизненный цикл полиовируса:

- 1 присоединение исходного вириона к рецептору;
- 2 вирион попадает в клетку;
- 3 трансляция белков вируса с его РНК с образованием полипептида;
- 4 полимеразы вируса реплицируют его РНК

Представители рода Enterovirus семейства Picornaviridae (по устаревшей классификации)

- 🧶 Вирусы полиомиелита 1, 2, 3;
- 🧶 Коксаки А и В; (24 и 6 сероваров);
- ЕСНО (34 серовара);
- 🧶 Энтеровирусы 68-71, 73 (неклассифицированные)

Согласно первоначальной классификации, в зависимости от способности размножаться в клетках человека и приматов, инфекциозности и патогенности для различных видов животных, от антигенных различий энтеровирусы делили на полиовирусы, вирусы коксаки А, коксаки В, эховирусы и неклассифицированные энтеровирусы

(ECHO: enteric cytopathic human orphan)

После введения молекулярных методов типирования и пересмотра ограничений старой классификационной схемы энтеровирусы делят на виды в зависимости от организации их генома, сходства последовательности нуклеотидов и биологических свойств

Таксономические виды рода Enterovirus человека

Группа/Вил

Энтеровирус

человека D

и входящие в виды серотипы (в соответствии с базой данных ICTV - Международного комитета по таксономии вирусов , **2012 г.**

Относятся серотипы (более 100)

i pyima, biig	
Энтеровирус человека A	Коксаки A 2-8, 10, 12, 14, 16 Энтеровирус 71, 76, 89-92, 114
Энтеровирус человека <mark>В</mark>	Коксаки А 9, Коксаки В 1-6, ЕСНО 1-7, 9, 11-21, 24-27, 29-33, Энтеровирусы 69, 73-75, 77-88, 93, 97, 98, 100, 101, 106, 107
Энтеровирус человека С	Коксаки А 1, 11, 13, 17, 19-22, 24 ЕСНО 95, 96, 99, 102, 104, 105, 109, 113, 116 Полиовирус 1-3

Энтеровирусы 68, 70, 94, 111

Состав рода *Enterovirus* пережил ещё несколько ревизий и, по данным международного комитета по таксономии вирусов (ICTV), на сентябрь 2018 (выпуск 2018bв) таксон включают 13 видов*

- Enterovirus A
- Enterovirus B
- Enterovirus С Полиовирус ^{3 типа}
- Enterovirus D
- Enterovirus E
- Enterovirus F
- Enterovirus G

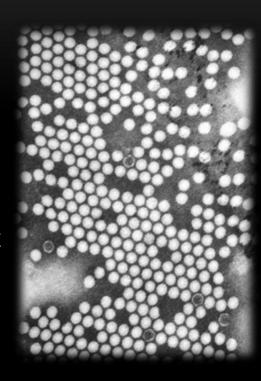
- Enterovirus H
- Enterovirus I
- Enterovirus J
- Rhinovirus A
- Rhinovirus B
- Rhinovirus C

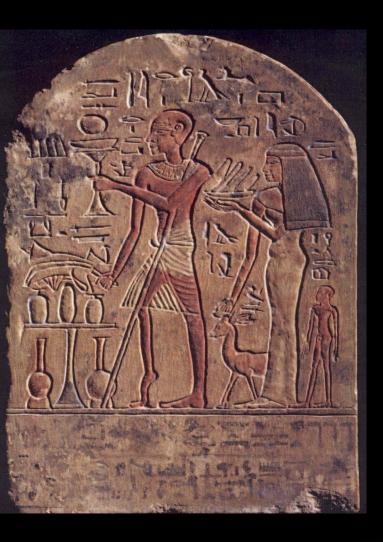
^{*} Таксономия вирусов на сайте международного комитета по таксономии вирусов (ICTV), проверено 21 августа 2019 г.

Генетическая изменчивость энтеровирусов (ЭВ)

- * ЭВ подвержены интенсивной **генетической изменчивости**, из-за чего время от времени появляются новые патогенные для человека серотипы (например, ЭВ 70 и 71).
- Результат возникновение полиовирусов вакцинного происхождения (ПВВП), обладающих повышенной нейровирулентностью.
- Важную роль играет процесс рекомбинации, когда два вакцинных вируса, находясь в одной клетке, обмениваются участками генетического материала. В результате получаются гибридные формы вирусов, совмещающие признаки обоих родительских штаммов, с возможным изменением тропизма, антигенного профиля или вирулентности.

Генетическая изменчивость энтеровирусов (ЭВ)


- Полиовирусы вакцинного происхождения в организме человека могут рекомбинировать с другими **штаммами ЭВ вида <u>С</u>.** В таком случае РНК рекомбинантного вириона заимствуется из генома вакцинного полиовируса, а неструктурные участки принадлежат другому ЭВ.
- Кроме того, в процессе репликации таких рекомбинантных вирусов могут иметь место нуклеотидные замены (мутации). Если это случается в сайте аттенуации, то происходит возврат вируса к дикому типу.
- Образуются **вакцинородственные** штаммы (**цВРПВ** циркулирующие вакцинородственные полиовирусы), с мутацией в области генома капсидного белка VP1, обладающие повышенной нейровирулентностью и способные вызывать паралитический полиомиелит, ассоциированный с вакцинацией.
- Случаи спорадических заболеваний и вспышек, вызванных подобными рекомбинантными вирусами, зарегистрированы в разных странах


2020

- Патогенез основных поражений, обусловленных ЭВ: После размножения в регионарных л/у и других образованиях лимфатической системы энтеровирусы гематогенно проникают в различные органы и ткани.
- Они обладают тропностью к эпителиальным клеткам, нервной ткани и мышцам, что и определяет различные варианты клинической картины.
- Энтеровирусы относятся к группе персистирующих вирусов.
- Резистентность. Все ЭВ кислотоустойчивы и относительно стабильны при низких значениях рН (менее 3,0), что позволяет им выживать в кислой среде желудка, а отсутствие суперкапсида делает их резистентными к действию жёлчных кислот.

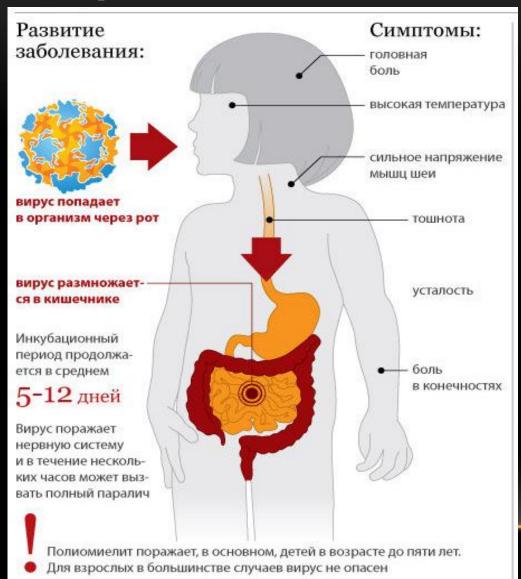
ЭНТЕРОВИРУСЫ

- Энтеровирусы распространены повсеместно.
- Более 90 % инфекций, вызванных вирусом полиомиелита, и более 50-80 % остальных энтеровирусных инфекций протекают скрытно.
- Если симптомы появляются, то они чаще неспецифичны лихорадка, воспаление верхних дыхательных путей.
- Характерная клиническая картина развивается лишь в небольшой части случаев.

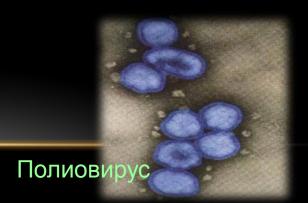
Барельеф с изображением египетского жреца Румы, приносящего жертву в храме Ашторет (Астарты). Характерный вид и положение правой ноги свидетельствуют о перенесённом полиомиелите (18-я династия, 1580-1350 гг. до н.э.).

Слово полиомиелит (poliomyelitis) в переводе означает воспаление серого вещества мозга (греч. polio – серый, myelitis – воспаление спинного мозга). Дело в том, что важнейшим биологическим свойством полиовирусов является их тропизм к нервной ткани, они поражают двигательные нейроны серого вещества спинного мозга.

Биологические модели полиовирусной инфекции



- Из лабораторных животных к вирусу полиомиелита наиболее восприимчивы приматы.
- Обезьяны могут быть заражены перорально, интраназально, подкожно, введением вируса в мозг. Экспериментальная инфекция сопровождается появлением менингеальных симптомов и параличей конечностей.
- Возможна адаптация вируса и к другим видам животных, особенно при внутримозговом введении хомякам и белым мышам. Пассажи на грызунах сопровождаются постепенной потерей патогенности для обезьян и человека.


Эпидемиология полиомиелита

- Источником инфекции является человек антропоноз
- Доминирующее значение имеет фекально-оральный путь заражения — основной. Возможны также воздушнокапельный, водный, алиментарный путь заражения,
- После инфицирования вирус размножается в ЖКТ и выделяется с фекалиями в огромном количестве с конца инкубационного периода (последние 3-7 дней) до 40-го дня болезни, а в ряде случаев – несколько месяцев.

Полиомиелит относится к числу **неизлечимых** инфекционных заболеваний

Хотя вирус первично реплицируется в эпителиальных и лимфоидных тканях верхних дыхательных путей, воздушно-капельный способ заражения существенной роли не играет из-за отсутствия катаральных явлений (но имеет место при кашле, чихании)

- Joaquin Sorolla, «Triste herencia» «Печальное наследство», 1899 г.
- Купание на море в Валенсии парализованных детей, пострадавших от полиомиелита, под присмотром монаха братства Святого Хуана.
- Эпидемия полиомиелита, которая произошла несколькими годами ранее в Валенсии, возможно, впервые отображена была в истории живописи через образы детей-инвалидов.

По **антигенным** признакам вирусы полиомиелита подразделяются на три типа: I, II, III.

- Наибольшей патогенностью для человека обладает полиовирус I
 типа: все значительные эпидемии полиомиелита были вызваны
 этим типом.
- Полиовирус II типа чаще вызывал латентную форму инфекции в сентябре 2015 года полиовирус типа 2 был объявлен уничтоженным на планете. Последний вирус был обнаружен в округе Алигарх на севере Индии в 1999 г.
- Полиовирус III типа 10 ноября 2012 года 11-месячный мальчик из штата Йобе на севере Нигерии стал последним ребёнком, парализованным вирусом дикого полиомиелита типа 3 (WPV3). После этого случая полиовирус типа 3 более никогда не обнаруживался ни в одной пробе по всему миру, но формально его не объявляют уничтоженным в глобальном масштабе, так как пока не исключено его скрытое циркулирование.

В 2017 г. в мире было зарегистрировано 12 случаев полиомиелита, вызванного диким полиовирусом (ДПВ) І типа в двух эндемичных странах с продолжающейся местной циркуляцией дикого полиовируса (Пакистан - 5, Афганистан - 7, из которых вирус периодически заносится в другие страны.

В 2018 году в мире зарегистрировали 33 новых случая заболевания полиомиелитом, вызванным диким полиовирусом типа 1 и только в 2 странах — Пакистане и Афганистане.

Неспособность ликвидировать полиомиелит в этих устойчивых очагах может привести к эпидемиям и пандемии (клиника только в 1 % случаев)

STOP POLIO

• Ребёнок, переживший паралитический полиомиелит. Нигерия, 2014 год

Бюллетень ВОЗ, 2019: Основные факты

- В одном из 100-200 случаев инфицирования развивается необратимый паралич (обычно ног). 5-10 % из числа таких парализованных людей умирают из-за наступающего паралича дыхательных мышц.
- В большинстве стран благодаря глобальным усилиям расширены потенциальные возможности для борьбы с полиомиелитом путем создания эффективных систем эпиднадзора и иммунизации.
- С 1988 года число случаев заболевания полиомиелитом уменьшилось более чем на 99 %: по оценкам, с 350 000 случаев до 33 случаев, зарегистрированных в 2018 году. Такое уменьшение стало результатом глобальных усилий по ликвидации этой болезни, в основном вакцинация.
- К началу 2019 г. осталось две страны (Афганистан, Пакистан) в которых никогда не прекращалась циркуляция дикого полиовируса І типа, из них вирус периодически заносится в другие страны (в 1988 году число таких стран превышало 125).

- Самая крупная вспышка полиомиелита, вызванного импортированным диким полиовирусом, произошла в 2010 г. в Таджикистане (458 лабораторно подтвержденных случаев). Она была вызвана диким полиовирусом (ДПВ) серотипа 1, генетически родственным штаммам из Индии, где в то время еще циркулировал дикий полиовирус).
- В **2011** г. в **Китае** был зарегистрирован **21** случай паралитического полиомиелита, вызванного ДПВ типа **1**. Выделенные от больных вирусы были генетически родственны полиовирусам из <u>Пакистана</u>.
- В РФ в 2018 г. не зарегистрировано случаев ОПП (ассоциированных с вакциной); 2017 г. 6 случаев;
 2016 г. − 1 случай острого паралитического полиомиелита, ассоциированного с вакциной.

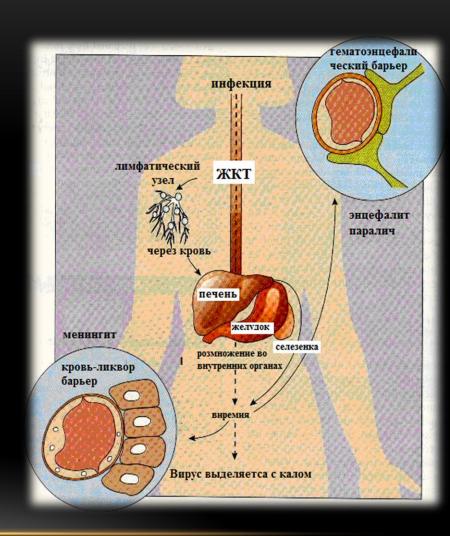
- В конце апреля 2013 года на Глобальном саммите по вакцинам в Абу-Даби (Объединенные Арабские Эмираты) был представлен Новый Стратегический план ликвидации полиомиелита и осуществления завершающего этапа в 2013-2018 годах.
- Это первый план по одновременной ликвидации всех типов болезни, вызванных как диким полиовирусом, так и полиовирусами вакцинного происхождения
- В плане поставлены 4 задачи:
 - выявление и прекращение передачи всех полиовирусов;
 - 🜞 укрепление систем иммунизации и изъятие оральных полиовакцин;
 - сдерживание полиовируса и сертификация прекращения его передачи;
 - планирование использования наследия программы борьбы против полиомиелита.

Страны, где прервана местная передача дикого полиовируса (ДПВ), но зарегистрированы вспышки полиомиелита, связанные с завозом ДПВ или циркуляцией вакцинородственных полиовирусов: В 2017 г. в мире зарегистрирован 61 случай острого вялого паралича с выделением циркулирующего вакцинородственного полиовируса типа 2 (цВРПВ2): в Сирийской Арабской Республике - 52 случая, в Демократической Республике Конго — 9 случаев.

2020

Патогенез поражений

- Первично **полиовирус** размножается в эпителии рта, глотки, тонкой кишки, а также в лимфоидных тканях кольца Пирогова-Вальдейера и пейеровых бляшках.
- Затем возбудитель проникает в кровоток (первичная вирусемия) и в различные органы, исключая ЦНС — развивается «малая болезнь».
- При наличии сывороточных **AT** (например, после введения ИПВ) дальнейшее диссеминирование возбудителя прекращается, то есть развивается абортивная инфекция.
- В противном случае развивается <u>вторичная</u> вирусемия, и возбудитель попадает в ЦНС («большая болезнь»).
- Тропизм возбудителя обусловлен наличием рецепторов для полиовируса на нейронах передних рогов спинного мозга, продолговатого мозга и варолиевого моста в 1 % случаев развиваются острые вялые параличи.


Вызываемая полиовирусом гибель двигательных нейронов передних рогов спинного мозга приводит к развитию параличей скелетных мышц, вследствие чего больной либо умирает, либо остается инвалидом на всю жизнь.

Помимо поражения ЦНС, могут развиваться миокардит, менингит, гиперплазия лимфатической ткани, изъязвление лимфатических фолликулов.

Основные клинические формы полиомиелита

- •абортивная (малая болезнь);
- •непаралитическая (менингеальная), проявляющаяся самоограничивающимся серозным (асептическим) менингитом;
- •паралитическая (большая болезнь);
- •инаппарантная (скрытая).

Форма течения полиомиелита определяется величиной инфицирующей дозы, степенью нейровирулентности вируса и иммунным статусом организма.

- Паралитическая форма (наблюдают у 0,1-1 % пациентов) начинается бурно, с подъёмом температуры тела до 39-40 °C, сочетающимся с неврологическими расстройствами. Параличи развиваются внезапно, на 3~5-е сутки.
- Обычно диагноз на ранних стадиях заболевания устанавливают лишь в 1 % случаев.
- Частота и тяжесть паралитической формы заболевания увеличиваются с возрастом. Для детей старше 10-15 лет более характерно развитие тяжёлых, калечащих форм заболевания.
- Около 10 % больных паралитическими формами инфекции умирают и около 40 % остаются инвалидами

2020

Иммунитет при полиомиелите

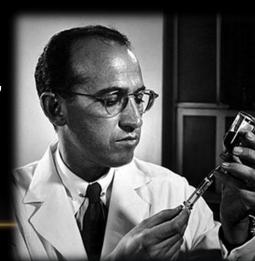
- После перенесенного заболевания (в том числе и в скрытой форме) и иммунизации остается прочный пожизненный гуморальный иммунитет, обусловленный вируснейтрализующими антителами и клетками иммунной памяти, а также резистентность клеток слизистой оболочки кишечника к гомологичному типу вируса (только оральная вакцина).
- Вируснейтрализующие AT появляются вскоре после заражения, иногда до появления симптомов болезни.
- Однако даже высокая концентрация АТ в сыворотке больных не предотвращает возникновение параличей после того, как вирус проник в ЦНС.
- Перекрестный иммунитет слабо выражен и встречается в основном между 2-м и 3-м типами.
- Материнский иммунитет сохраняется в течение 3-5 нед жизни.

Лечение полиомиелита

- средства специфической противовирусной терапии отсутствуют;
- проводят симптоматическое лечение и предупреждают развитие вторичных бактериальных инфекций;
- после стихания клинических проявлений осуществляют коррекцию ортопедических дефектов, включая физиотерапию, оперативные вмешательства и применение специальных устройств.

Полиомиелит неизлечим, его можно только предотвращать. Полиомиелитная вакцина защищает ребенка на всю жизнь (ВОЗ, 2018 г.).

Иммунотерапия


• Иммунный сывороточный человеческий углобулин при своевременном (профилактическом) введении предупреждает развитие паралитической формы, но не устраняет возникновение инаппарантной инфекции — экстренная профилактика в очаге.

• При появлении клинических симптомов болезни (параличей) введение ү-глобулина уже не эффективно.

Джонас Эдвард Солк, создатель ИПВ – инактивированной полиовакцины (1954)

Инактивированная вакцина (С<u>о</u>лка) – ИПВ (1954 г.)

- Лишена возможности мутаций, приводящих к увеличению вирулентности
- нет риска ВАПП
- Высокоэффективна
- ■Образование IgM- и IgG
- Не вызывает передачу вируса контактным лицам (но и не обеспечивает вторичную вакцинацию)
- Вводится парентерально, не вызывает развития местного иммунитета слизистых кишечника (но формирует иммунитет в полости рта)
- Требуется не менее 4 инъекций
- Сравнительно дорогая

Живая вакцина (С<u>э</u>бина) - ОПВ

- Сравнительно дешевая, вводится перорально
- ■Вызывает развитие **местного** (**l**g **A**) в полости рта и в кишечнике и системного иммунитета (IgM- и IgG)
- Способствует формированию иммунной прослойки в популяции обеспечивает передачу контактным лицам и вторичную вакцинацию
- Вакцинный штамм способен мутировать и резко увеличивать вирулентность - (цПВВП и цВРПВ циркулирующие полиовирусы вакцинного происхождения и вакцинородственный полиовирус) Требует хранения в холодильнике

Алберт Сэбин вводит детям пероральную живую аттенуированную полиовакцину (1959 г.)

Живые вакцинные штаммы после аттенуации утрачивают способность к репродукции в клетках ЦНС. Они отличаются от дикого штамма по ряду нуклеотидов и аминокислот, большая часть замен концентрируется в концевых участках VP1.

№ Использование живой полиовакцины чревато опасными осложнениями – у некоторых вакцинированных живой вакциной и контактных с ними (иммунокомпромиссных) живая вакцина вызывает заболевание с развитием острых вялых стойких полиопараличей. В настоящее время существует термин для этого явления — «ВАПП —
Вакциноассоции рованный полиомиелитный паралич». Для штаммов —

вакциноассоциированный полиомиелитный паралич». Для штаммов цПВВП — циркулирующий полиовирус вакцинного происхождения Полиовирусы вакцинного происхождения в организме могут рекомбинировать с другими штаммами ЭВ вида С — образуются цВРПВ — циркулирующие вакцинородственные штаммы полиовируса, обладающие повышенной нейровирулентностью и способные вызывать паралитические формы заболевания. Случаи спорадических заболеваний и вспышек, вызванных подобными рекомбинантными вирусами, описаны в разных странах.

Страны с циркуляцией цВРПВ (бюллетень ВОЗ, 2018):

- Нигерия (последние штаммы изолированы 23 марта 2016 года)
- N Гвинея (последний случай 14 декабря 2015)
- Мадагаскар (последний случай 22 августа 2015)
- Корейская НДР (последний случай 11 января 2016)
- Мьянма (последний случай 5 октября 2015)

Страны, не зараженные сегодня диким полиовирусом или цВРПВ, но которые уязвимы к их появлению и циркуляции: Сомали, Экваториальная Гвинея, Камерун, Нигер, Чад (ДПВ1) и Украина (cVDPV1)


Для предотвращения рисков применения **ОПВ** предполагается **поэтапное прекращение использования ОПВ во всем мире**. Оно началось с изъятия компонента ОПВ, содержащего **полиовирус типа 2**, путем повсеместного перехода с **трехвалентной** ОПВ (**тОПВ**) к **бивалентной** ОПВ (**бОПВ**), содержащей вирус типа **1** и **3**, в **2016** г.

Основания для изъятия:

- **ДПВ типа 2** не циркулирует в природе с **1999** г., что исключает необходимость наличия вируса типа 2 в составе вакцины;
- С 2009 г. 97 % всех случаев цВРПВ (циркулирующих вакцинородственных полиовирусов) были вызваны вирусом типа 2;
- 40 % всех случаев ВАПП связаны с компонентом ОПВ, содержащим вирус типа 2;
- Наличие в вакцине компонента, содержащего вирус типа 2, ослабляет иммунный ответ в отношении полиовирусов типа 1 и 3 и требует введения большего числа доз тОПВ, для того чтобы достигнуть пороговых показателей коллективного иммунитета в отношении этих типов вируса, в сравнении с числом доз бОПВ, необходимых для формирования такого же порогового показателя иммунитета

2020

- Уже в 2009-2010 гг. в мире стали массово применять моновакцины и бивалентные вакцины (с вирусом типа 1, вирусом типа 3, или двумя сразу). Это резко увеличило число привитых, у которых образуется "нужное" количество антител (≥ на 50 % и более) т.е. трехвалентная, стандартная вакцина давала такой результат только в половине случаев. С начала 2010 г. число случаев дикого полиомиелита резко пошло на убыль.
- Применение обеих вакцин одновременно обеспечивает наилучшую защиту.
- Российская Федерация уже в 2008-2009 гг. перешла на смешанный вариант полиовакцинации первая прививка осуществляется инактивированной вакциной (ИПВ), а последующие оральной живой вакциной (ОПВ). Это призвано исключить случаи ВАПП. И действительно, статистика показывает, что официально регистрируемые случаи ВАПП в России с 2015 г. отсутствовали (в 2014 г. было 5 случаев), в 2017 г. 3 случая ВАПП в Республике Ингушения.
- Если эффективность предпринятых мер действительно такова, как надеется ВОЗ, дикий вирус всё-таки может быть ликвидирован в ближайшие годы.

- Инактивированная вакцина против полиомиелита Полимилекс
- ЦЕНТР ВАКЦИНАЦИИ ИНПРОМЕД
- Нанолек ООО (Россия упаковщик), Bilthoven Biologicals BV (Нидерланды производитель)
- В составе вакцины 3 инактивированных вируса полиомиелита (1, 2 и 3 типов).

Самые распространенные инактивированные полиовакцины:

- •Имовакс Полио;
- •Инфанрикс ИПВ;
- •Полиорикс;
- •Тетракок;
- •Пентаксим.

- В силу исторического прогресса, достигнутого в прерывании передачи ДПВ, вакцинные вирусы, согласно оценкам, вызвали в 2012-2018 годах больше случаев связанного с полиомиелитом паралича (ВАПП и цПВВП и цВРПВ) в мире, чем дикие вирусы, создающие уникальную эпидемиологическую ситуацию.
- Таким образом, использование **ОПВ** должно быть <u>свернуто</u> в ближайшее время в целях **искоренения полиомиелита**, вызванного различными причинами.
- Сегодня наблюдаются общемировые трудности с инактивированной полиомиелитной вакциной (ИПВ), которые объясняются возросшей мировой потребностью в данном препарате. Эта потребность связана с поэтапным полным переходом на использование ИПВ к 2019 году согласно Глобальному плану Всемирной организации здравоохранения по эрадикации (уничтожению) полиомиелита, говорилось в сообщении ведомства в сентябре 2017 г.

В настоящее время единственный производитель вакцины против полиомиелита на территории России ФГУП «Предприятие по производству бактерийных и вирусных препаратов Института полиомиелита и вирусных энцефалитов им. М.П. Чумакова» выпускает только живые вакцины против полиомиелита. Другие препараты для проведения вакцинации традиционно закупаются за рубежом.

Однако в феврале 2015 г. предприятие представило первые образцы инактивированной вакцины собственной разработки. Начало её использования было

запланировано на 2017 г.

Диагностика полиомиелита

- Идентификация возбудителя полиомиелита имеет особое значение, так как многие энтеровирусы и герпесвирусы способны вызывать похожие поражения.
- Материалы для исследований кровь, СМФ, кал, материал из носоглотки.
- Выделение возбудителя полиомиелита проводят в первичных культурах ткани (эмбрионы) или культурах клеток HeLa, Hep-2, COЦ и др.
- Идентификацию полиовирусов осуществляют по цитопатическому эффекту и в РН с типовой антисывороткой.
- Вирусспецифические АТ к полиовирусу определяют в сыворотке и СМЖ; выявление высоких титров IgM указывает на наличие свежей инфекции.
- ПЦР

Неполиомиелитные энтеровирусы (неполиовирусы)

- **Неполиовирусы** образуют группу, близкую к полиовирусам и привлекают внимание в связи с тем, что вызываемые ими заболевания по эпидемиологической характеристике (одинаковые источники и пути распространения инфекции) сходны с **полиомиелитом**. Их отличием от полиомиелита является более широкий объем вспышек и более доброкачественное течение заболеваний.
- Повсеместная циркуляция *неполиоэнтеровирусов* среди населения обусловлена рядом факторов, среди которых следует отметить высокую восприимчивость людей, возможность длительного вирусоносительства при отсутствии видимых проявлений, способность вирусов долго сохраняться в объектах окружающей среды (водоемах, сточной воде).

Эпидемиология ЭВИ

- 🍀 выраженная сезонность заболеваний (лето-осень);
- выделение ЭВ из кишечника, носоглотки, ликвора и крови;
- преимущественное поражение детей в возрасте до 12 лет;
- широкое носительство ЭВ среди здоровых людей.
- Источник инфекции больные, здоровые носители.
- Основной путь передачи вируса контактно-бытовой, меньшую роль играют водный и пищевой пути.
- Основной механизм передачи фекально-оральный, вероятен также аэрозольный. Выделение с фекалиями может продолжаться от нескольких недель до двух месяцев, когда вирус уже не обнаруживается ни в крови, ни в смывах из зева.

Эпидемиология ЭВИ

- ○Основным резервуаром в окружающей среде являются хозяйственно-бытовые сточные воды, загрязненные фекалиями. Эти сточные воды могут попадать в открытые водоемы, использующиеся для забора питьевой воды и для купания населения. Нередко из образцов воды, взятой из этих водоемов и системы центрального водоснабжения, обнаруживаются ЭВ тех же серотипов, которые вызвали вспышку.
- ЭВИ наблюдаются повсеместно в виде спорадических форм, групповых заболеваний и эпидемических вспышек.
- Некоторые штаммы могут доминировать в циркуляции в течение нескольких лет, затем исчезать, чтобы появиться годы спустя.
- В России количество зарегистрированных случаев ЭВИ в 2018 г. составило 14441. Из них ЭВМ − 3171 случай − приблизительно уровень 2016 г.

45

РФ: 2014 г. 9210 случаев ЭВИ, из них ЭВМ – 3194;

РФ: 2015 г. 7850 случаев ЭВИ, из них ЭВМ – 2994,

РФ: 2016 г. 14329 случаев ЭВИ, из них ЭВМ – 4367

РФ: 2017 г. **23959** случаев ЭВИ, ЭВМ – **251**

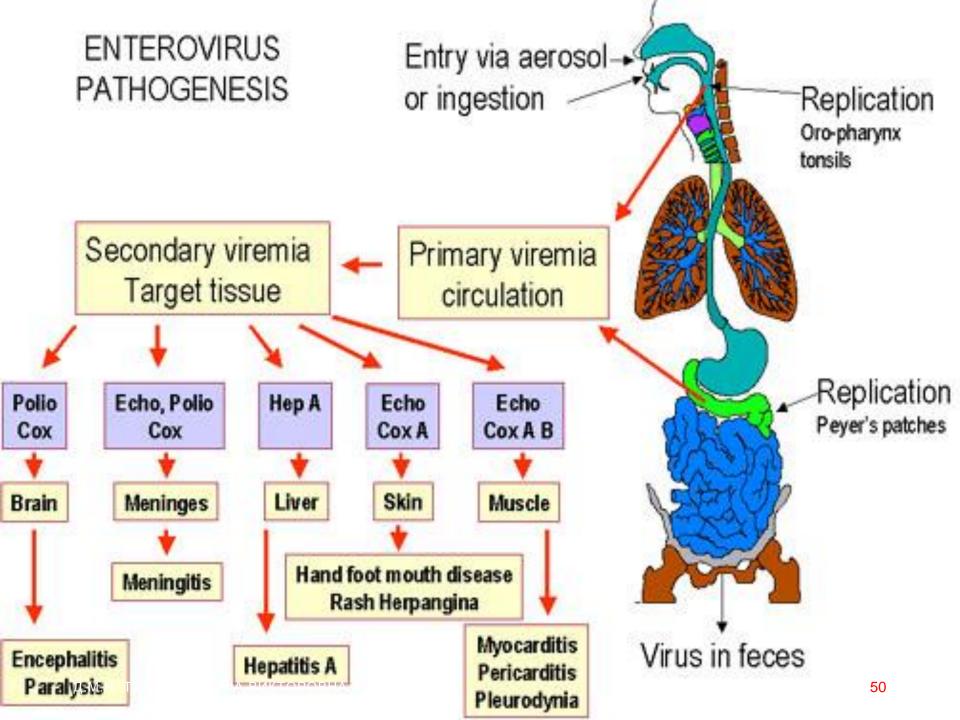
РФ: 2018 г. 14441 случай ЭВИ, ЭВМ - 305

Значительное кол-во случаев ЭВИ осложняется ЭВМ!

• В США (2014 г.) крупную вспышку ОРВИ среди детей вызвал редкий и малоизученный энтеровирус EV-D68

Многообразие клинических форм ЭВИ

- Различные ЭВ способны обусловить развитие одних и тех же симптомов,
- * вместе с тем, один и тот же ЭВ может быть причиной заболеваний с разной клинической картиной.
- * ЭВ обладают тропизмом к нервной ткани, мышцам и эпителиальным клеткам, что проявляется и в клинической картине болезни, и в морфологических изменениях тканей, причем разные виды энтеровирусов поражают различные участки ЦНС.


Характеристика течения ЭВИ (неполио) по данным НИИДИ, Санкт-Петербург (2015 г.)

В большинстве случаев ЭВИ клинически никак не проявляется, однако у 12 % пациентов может наблюдаться широкий спектр симптомов.

Клинические синдромы зависят:

- 🌑 от вида ЭВ,
- 🖲 локализации ЭВ в организме в результате вирусемии,
- 🌑 вирулентности ЭВ,
- 🌕 состояния иммунитета человека и др.

Клинические синдромы, наблюдающиеся при энтеровирусных инфекциях неполиомиелитной этиологии (Вирусы Коксаки А и В)

Вирусы Коксаки А

Серозный менингит (типы 2,3,4,6,7,9,10)

Герпангина (типы 2,3,4,5,6,8,10)

Острый фарингит (типы 10,21)

Параличи, редкие случаи (типы 1,2,5,7,8,9,21)

Экзантема (типы 4,5,6,9,16)

Экзантема полости рта и конечностей (типы 5,16)

Пневмония новорожденных (типы 9,16)

Контагиозный насморк (типы 21,24)

Гепатит (типы 4,9,20)

Диарея новорожденных и детей младшего возраста (типы 18,20,21,22,24)

Острый геморрагический конъюнктивит (вариант типа 24 вируса Коксаки А)

Вирусы Коксаки В

Плевродиния (типы 1-5)

Серозный менингит (типы 1-6)

Параличи, редкие случаи (типы 2-5)

Тяжёлая системная инфекция новорожденных, менингоэнцефалит и миокардит (типы 1-5)

Перикардит, миокардит (типы 1-5)

Заболевание верхних дыхательных путей и пневмония (типы 2-5)

Сыпь (тип 5)

Гепатит (тип 5)

Лихорадка (типы 1-6)

Клинические синдромы, наблюдающиеся при энтеровирусных инфекциях неполиомиелитной этиологии

Вирусы ЕСНО

Серозный менингит (все серотипы за исключением 12,24,26,29,33,34)

Параличи (типы 2,4,6,9,11,30; возможно также 1,7,13,14,16,18,31),

Энцефалит, атаксия, синдром Гийена-Барре (типы 2,6,9,19, возможно 3,4,7,11,14,18, 22)

Экзантема (типы 2,4,6,9,11,16,18; возможно также 1,2,3,5,7,12,14,19,20)

Респираторное заболевание (типы 4,9,11,20,25, возможно также 1,2,3,6,7,8,16,19,22)

Диарея (от больных выделяли вирусы многих типов, однако их этиологическая роль достоверно не подтверждена)

Эпидемическая миалгия (типы 1,6,9)

Перикардит и миокардит (типы 1,6,9,19)

Тяжелое системное заболевание новорожденных с некрозом печени (тип 11)

Гепатит (типы 4,9)

Острый увеит (типы 11,19)

Энтеровирусы типов 68-71 и 73

Пневмония (тип 68)

Острый геморрагический конъюнктивит (тип 70)

Параличи (типы 70 и 71)

Асептический менингит и менингоэнцефалит (типы 70 и 71)

Экзантема полости рта и конечностей (тип 71)

Лихорадка с конвульсиями (тип 73)

Летальный отек легких (тип 71)

 Наиболее часто отмечают наличие «простудной» симптоматики, сыпи или лихорадки неясного генеза.

Экзантема

- ***** Герпангина
- Теморрагический конъюнктивит
- №Ряд авторов указывают на возможность летальных исходов у людей с диагнозами энцефалит, ящуроподобное заболевание (ЯПЗ), полиомиелитоподобное заболевание, кишечные расстройства, миокардит, вызванными различными серотипами ЭВ.
- *Так, летальность у новорожденных с энтеровирусным миокардитом может составлять от 30 до 83 %

ЭВ считаются наиболее частой причиной серозного (асептического, энтеровирусного, ЭВМ) менингита, некоторые из них (Коксаки В5, ЕСНО 6, 9 и 30) вызывают крупные вспышки этого заболевания, другие чаще провоцируют отдельные случаи менингита.

Серозные менингиты распространены повсеместно как в форме спорадической заболеваемости, так и в форме вспышек, нередко

весьма масштабных.

Серозный энтеровирусный менингит

- Энтеровирус 71 (ЭВ-71) вызывает крупные вспышки вирусной экзантемы полости рта и конечностей (ящуроподобное заболевание ЯПЗ) с возможными последующими неврологическими осложнениями (острые вялые параличи, серозный менингит, энцефалит).
- Неврологические проявления ЭВ-71 : асептический менингит, острый вялый паралич, энцефалит и серьезные системные расстройства, включая отек легких и кардиореспираторный коллапс.
- В 2010 г. в Китае было зарегистрирована эпидемия, вызванная ЭВ-71, было поражено около 3,5 млн человек, погибло 1384 человека. Почти все случаи неврологических осложнений и все случаи со смертельным исходом были связаны с диагнозом ЯПЗ.
- В 2011 г. вспышка, вызванная ЭВ-71, была зарегистрирована на территории Вьетнама. Было поражено около 175 тыс. человек, 200 детей погибло.
- На территории Европы пока регистрируют спорадические случаи и немногочисленные групповые заболевания, вызванные ЭВ-71. Однако нельзя исключить заносы высокопатогенных штаммов, циркулирующих в Азии, на территории европейских стран.

Несмотря на широту распространения ЭВ и экономический ущерб от случаев временной нетрудоспособности, вызванной ЭВИ, вакцинация доступна лишь в отношении полиовирусов.

- Разнообразие серотипов энтеровирусов и их генетическая изменчивость затрудняют разработку вакцин против этой группы возбудителей.
- В настоящее время исследователи пытаются разработать вакцину против энтеровируса 71, однако ни одна из заявленных кандидатных вакцин еще не прошла все стадии клинических испытаний.

Лабораторная диагностика ЭВИ

- С 2006 г. в Российской Федерации введена обязательная регистрация всех случаев энтеровирусной инфекции.
- Надзор за энтеровирусными инфекциями включает мониторинг заболеваемости ЭВИ, в том числе энтеровирусного менингита — наиболее распространенной формы энтеровирусной инфекции, требующей госпитализации.
- И, кроме того, необходимо слежение за циркуляцией неполиомиелитных энтеровирусов путем исследования материала от больных с подозрением на энтеровирусную инфекцию и проб из объектов окружающей среды.

- Для лабораторной диагностики ЭВИ в зависимости от особенностей клинической картины заболевания используют следующие типы клинического материала: СМЖ; смыв из ротоглотки/носоглотки; отделяемое конъюнктивы, везикул, язв при герпангине; образцы фекалий и др.
- Аутопсийный материал: ткани головного, спинного, продолговатого мозга, печени, легких, миокарда, лимфоузлы, содержимое кишечника и ткань кишечной стенки (в зависимости от особенностей имевшей место клинической картины заболеваний).
- Лабораторную диагностику ЭВИ проводят как путем классических вирусологических методов, так и с помощью молекулярно-биологических методов.

- Выделение вирусов проводят на чувствительных культурах клеток. Согласно Руководству ВОЗ по лабораторным исследованиям полиомиелита [2005], для исследования материала, потенциально содержащего энтеровирус, рекомендованы культуры клеток:
- RD (клетки рабдомиосаркомы человека)
- **L20B** (генетически модифицированные мышиные клетки, экспрессирующие рецептор к полиовирусу).
- НЕр2, чувствительную к полиовирусам и вирусам группы Коксаки В.

- Идентификацию полиовирусов серологическим методом проводят путем постановки реакции микронейтрализации с набором диагностических иммунных сывороток, специфичных к трем серотипам полиовирусов, в 96-луночном планшете.
- Идентификацию <u>неполиомиелитных</u> энтеровирусов осуществляют с помощью смесей сывороток, поскольку большое число различных серотипов энтеровирусов делает типирование моноспецифичными сыворотками практически невозможным.
- Смеси сывороток готовят по перекрывающей схеме, что позволяет определить большинство наиболее часто встречающихся энтеровирусов. Эти смеси производства Национального института охраны здоровья и окружающей среды (Нидерланды) рекомендуются для исследований в сети полиолабораторий ВОЗ. Однако не все энтеровирусы могут быть идентифицированы этим методом.

Молекулярно-биологические методы: полимеразная цепная реакция (ПЦР) и секвенирование генома вирусов, которые осуществляются в соответствии с нормативными документами [2009].

Применение ПЦР рекомендовано при:

- необходимости проведения исследований большого количества образцов при развитии вспышек ЭВИ;
- решении рутинных задач клинической диагностики;
- осуществлении эпидемиологического надзора за энтеровирусами как элемента скрининга в сочетании с методиками молекулярного генотипирования энтеровирусов и/или вирусологическими исследованиями;
- осуществлении оперативного надзора за определенными серотипами энтеровирусов, ассоциированными со вспышками заболеваний (EV71 HFMD) с применением генотипо-специфических тест-систем;
- для выявления энтеровирусов, не вызывающих ЦПД на культуре клеток.

ПЦР в реальном времени

При проведении Real-Time ПЦР – одновременно происходят:

- 🏶 амплификация,
- 🏶 детекция
- количественное определение специфической последовательности ДНК в образце,
- 🌞 автоматическая регистрация и
- **ж** интерпретация полученных результатов

- Молекулярное типирование основано на определении нуклеотидной последовательности области генома, кодирующей капсидный белок VP1, содержащий аминокислотные последовательности, определяющие серотип вируса. Путем секвенирования участка генома VP1 и сравнения полученной нуклеотидной последовательности с другими последовательностями, содержащимися в базе данных GenBank, возможно достаточно точное определение серотипа энтеровируса. Доказана 100 %-ная корреляция между серотипами энтеровирусов, определенными с помощью реакции нейтрализации специфическими сыворотками и секвенирования участка генома VP1.
- С помощью секвенирования были идентифицированы новые серотипы энтеровирусов (ЭВ 96, 99 и 102). Предполагается, что штаммы, имеющие, по крайней мере, 75 % идентичности по участку генома VP1 и 88 % идентичных аминокислот, относятся к одному серотипу.
- Помимо определения серотипа ЭВ с помощью данных, полученных в результате секвенирования, проводят филогенетический анализ изучаемых штаммов, позволяющий установить источник инфицирования, проследить связи между предполагаемым источником инфекции и зараженными людьми, а также выявить территорию, откуда произошел занос вируса.

Вирусологический метод диагностики энтеровирусных заболеваний

- Лабораторная диагностика энтеровирусов основана на выделении вирусов из клинического материала (вирусологический метод) и данных серологического обследования парных сывороток.
- Серологическое обследование парных сывороток проводят в РСК и РН;
- иммуносерологические исследования выделенного вируса проводят в <u>культуре клеток</u> и на <u>мышах-сосунках</u> с использованием эталонных препаратов энтеровирусов.
- Для выделения энтеровирусов используют кишечное содержимое, кровь, смыв и мазки из зева, реже (при менингитах) ликвор, а в случае смерти больного исследуют кусочки ткани из разных органов.
- Исследуемым материалом заражают культуры клеток (полиовирусы, ЕСНО, Коксаки В и некоторые серовары Коксаки А), а также новорожденных мышей (Коксаки А).

- Выделение вирусов проводят одновременно в первичной культуре клеток почек обезьян и перевиваемых клетках амниона человека.
- Все типы вирусов *ECHO* вызывают ЦПД, в то время как вирусы *Коксаки А* с трудом выделяются в культурах клеток, а ЦПД в культуре клеток почек обезьян вызывает только вирус *Коксаки А9*.
- Типирование вирусов проводят в РН в культуре клеток; в РСК; типирование вирусов, обладающих <u>гемагглютинирующей</u> активностью, проводят в РТГА с эритроцитами человека группы 0, в методе непрямой ИФ (МФА). Для типирования используют эталонные смеси сывороток различных сочетаний.
- [Канаева О.И. / Инфекция и иммунитет 2014, Т. 4, № 1, с. 27-36]

продолжение

- Новорожденным мышам 14-дневного возраста, исследуемый материал вводят комбинированно в/б и п/к, при отсутствии реакции проводят следующий пассаж, после двух слепых пассажей результат считают отрицательным.
- Большие дозы вирусов Коксаки вызывают гибель мышей-сосунков через 13 дней, малые дозы вызывают характерную клиническую форму болезни, сопровождающуюся изменениями в основном поперечнополосатых мышц.
- Выделенный вирус идентифицируют в PH в культуре клеток и на мышах-сосунках с помощью набора типоспецифических сывороток.

Лечение, профилактика неполио инфекций

- Средства терапии и эффективной профилактики ECHO-вирусных инфекций отсутствуют;
- лечение поражений симптоматическое.

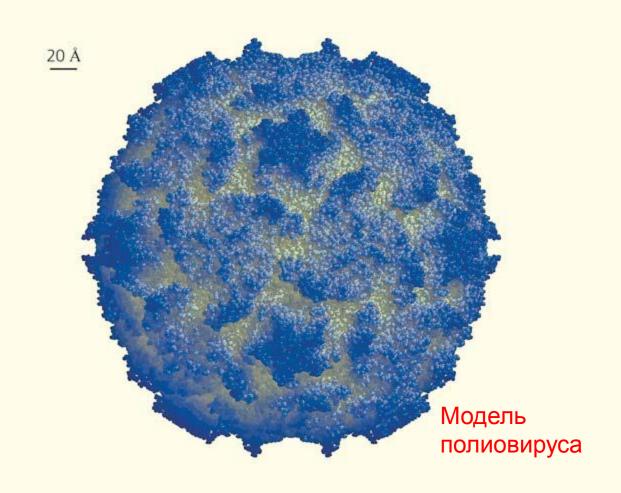
Сыпь при энтеровирусной инфекции

ЗАКЛЮЧЕНИЕ

- Одной из главных проблем в изучении энтеровирусов является их высокая изменчивость, которая в процессе эволюции привела к большому разнообразию серотипов этих вирусов, что затрудняет идентификацию энтеровирусов классическими вирусологическими методами приходится секвенировать геном выделенных энтеровирусов.
- Многообразие возбудителей приводит к разнообразию клинических форм заболеваний. Хотя в большинстве случаев инфицирование проходит без клинических проявлений, энтеровирусы способны вызывать такие заболевания, как серозный менингит, увеит, инфекционный миокардит, ящуроподобное заболевание, паралич, перикардит, панкреатит, менингоэнцефалит и др.

ЗАКЛЮЧЕНИЕ

- Создание вакцин для многих типов энтеровирусов является нереальным, и основные меры профилактики связаны с противоэпидемическими мероприятиями.
- Бессимптомное носительство, высокая контагиозность, способность длительно сохраняться в водных объектах, отсутствие специфической профилактики являются причинами возникновения массовых вспышек энтеровирусных инфекций по всему миру.


 Вирус SV40 был выделен из инъекционной формы вакцины от полиомиелита, выработанной в период от 1955 до 1961 года.

Вирус попал в вакцину из клеток почек инфицированных обезьян, которых использовали для выработки вакцины.

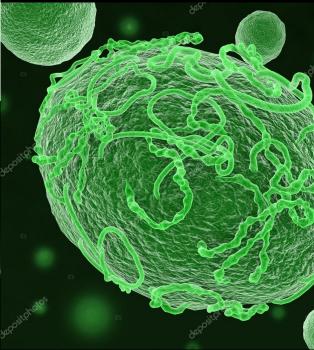
Заражена SV40 была и оральная вакцина, содержащая живой вирус, и инъекционная вакцина, содержащая убитый вирус.

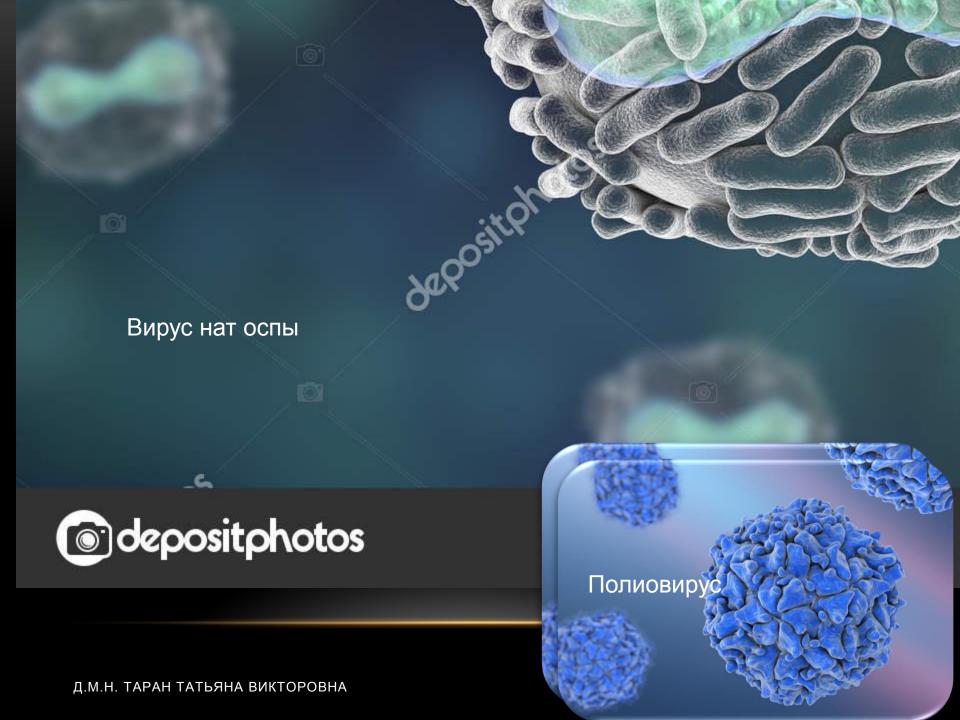
Анализ, представленный на Vaccine Cell Substrate Conference в 2004 г. показал, что вакцины, применяемые в странах бывшего Советского блока, в Китае, Японии и Африке, могли быть заражены SV40 до 1980 года, это означает, что сотни миллионов людей могли быть несознательно заражены вирусом [Vaccine scandal revives cancer fear, Debbie Bookchin, New Scientist, 07 July 2004].

SV40 BMDYC

ащение от ng virus pyc, клетках ека.

омавирусы, Кусом и может зание чно находится й инфекции.


были м SV40, так как была экцина


- Инфицирование энтеровирусами Коксаки во время беременности может привести к спонтанному аборту, миокардиту у плода и задержке развития у новорожденного.
- Наиболее уязвимыми категориями населения являются новорожденные, дети и лица с иммунодефицитом, у которых заболевание может перейти в тяжелую форму или привести к летальному исходу.
- Ряд авторов указывают на возможность летальных исходов как у взрослых, так и у детей с диагнозами энцефалит, ящуроподобное заболевание (ЯПЗ), полиомиелитоподобное заболевание, кишечные расстройства, миокардит, вызванными различными серотипами вирусов.
- Так, летальность у новорожденных с вирусным миокардитом может составлять от 30 до 83 %

- Стрептококки и киш палочка
- эбола

